
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41107 27

Plagiarism Detection Tool for Programs

Yash Sanzgiri
1
, Kevin Garda

2
, Akshay Pujare

3

Student, Dept of Information Technology, Fr Conceicao Rodrigues College of Engineering, Mumbai, India
1, 2, 3

Abstract: Plagiarism is an act of Fraud which involves copying someone else’s work and stating it as our own without

giving proper credit to that person. Plagiarism was seen earlier in various fields such as literature, science etc.

Nowadays Plagiarism can also be seen in Programs especially in colleges where programming assignments are

performed. Plagiarism is an easy to do task, but very difficult to detect without proper tool support. This report presents

an overview of the tool which would be developed for detecting plagiarism. The tool would help detect plagiarism

efficiently and help the faculty grade the students effectively.

Keywords:Plagiarism, Program similarity, Karp Rabin, Tokenization.

I. INTRODUCTION

Plagiarism is an act of unethical behaviour, which involves

reuse of someone else's work without explicitly

acknowledging the original author. [1][6] A good example

of plagiarism is source code plagiarism in programming

languages courses, when a student submits a program

whose part was copied from another student’s program or

the internet. In such a case, the plagiarized source code has

been derived from another piece of source code, with a

smallnumber of routine transformations. Plagiarism in

university course assignments is an increasingly common

problem. Several surveys showed that a high percentage of

students have engaged in some form of academic

dishonesty, particularly plagiarism.

Source code plagiarism is an easy to do task, usually,

when students are solving the same problem by using the

same programming language, the probability of their

solutions looking same is high. Thus detecting Plagiarism

is very tedious for the faculty members without proper tool

support.

II. LITERATURE SURVEY

This section presents an overview of the existing

development in plagiarism detection and also explains

certain related concepts. There are three main categories of

plagiarism detection approaches:[6][7] text-based,

attribute oriented code-based and structure-oriented code-

based. These approaches are used by source code

similarity detection tools that can be divided into two

categories: offline and online. Online source code

similarity detection tools can check a document for

fragmentsthat can be found through web search engines,

while offline source code similarity detection tools check

similarity between documents usually stored in a database.

A. MOSS

Moss (for a Measure of Software Similarity) [3] [4] [5] is

an automatic system for determining the similarity of

programs. The main application of Moss has been in

detecting plagiarism in programming classes. MOSS was

developed in 1994, and has been very eff ective in

detecting similarity in programs. The algorithm behind

moss is a significant improvement over other cheating

detection algorithms.

MOSS is not a system to completely detect Plagiarism. It

is still up to a human to go and look at the parts of the

code that Moss highlights and make a decision about

whether there is plagiarism or not. One way of thinking

about what Moss provides is that it saves teachers and

teaching staff a lot of time by pointing out the parts of

programs that are worth a more detailed examination. But

once someone has looked at those portions of the

programs, it shouldn’t matter whether the suspect code

was first discovered by Moss or by a human; the case that

there was plagiarism should stand on its own. In particular,

it is a misuse of Moss [3] to rely solely on the similarity

scores. These scores are useful for judging the relative

amount of matching between diff erent pairs of programs

and for more easily seeing which pairs of programs stick

out with unusual amounts of matching. But the scores are

certainly not a proof of plagiarism. Someone must still

look at the code. Moss is being provided as an Internet

service. The service has been designed to be very easy to

use–you supply a list of files to compare and Moss does

the rest. The current Moss submission script is for Linux.

B. Karp Rabin Algorithm

Karp-Rabin Algorithm [1]is a string matching algorithm.

It uses fingerprints to find occurrences of one string into

another string. Karp-Rabin Algorithm reduces time of

comparison of two sequences by assigning hash value to

each string and word. Without hash value, it takes too

much time for comparison like if there is a word W and

input string is S then word is compared with every string

and sub string in program and hence it consumes more

time. Karp-Rabin [1] has introduced concept of Hash

value to avoid time complexity O(m2). It assigns hash

value by calculating to both word and string/substring. So

hash of substring (S) matches with hash value of W then

only we can say exact comparison is done.

functionNaiveSearch(string s[1..n], string pattern[1..m])

for i from 1 to n-m+1

for j from 1 to m

if s[i+j-1] pattern[j]

jump to next iteration of outer loop

return i

return not found

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41107 28

Karp-Robin Algorithm using Hashing:- [3]

functionRabinKarp(string s[1..n], string pattern[1..m])

hpattern := hash(pattern[1..m]); hs := hash(s[1..m])

for i from 1 to n-m+1

ifhs = hpattern

if s[i..i+m-1] = pattern[1..m]

return i

hs := hash(s[i+1..i+m])

return not found

has(s[1..m)

d:=1000;

p:=0;

t:=0;

h:=1;

q:=101;

for i from 0 to m

p=(d*p+ s[i..i+m-1])return p;

C. Similarity Measurement used by MOSS

MOSS uses the following method for calculating the

similarity between 2 programs.It uses the percent

similarity between the 2 programs based on the number of

tokens.[5]

Match=(same-diff)/minle-(maxle-minle)/maxle;

Percentage match=max(0,match)*100

Case1:Nothing is copied.

maxfile=500

minle=400

same=500 tokens

diff=420 tokens

Match=(500-420)/400-(500-400)/500 =0

Percentage match=max(0,0)*100=0Case 2:Something is

copied

maxfile=500

minfile=400

same=300 tokens

diff=20 tokens

match=(300-20)/400-(500-400)/500=0.5

Percentage match=max(0,0.5)*100=50

III. PROPOSED RECOMMENDATION OF THE

SYSTEM

Plagiarism can be done using various techniques.In order

to detect Plagiarism eff ectively the following 12 cases

must be detected.

Fig.1. Example of a sample program for explaining the test

cases

It is typically presented in order of sophistication, least to

greatest. [2] Each test case is depicted in the programs.

The programs look diff erent but are similar and copied.

The following figure gives an example of 2 programs

which look different but are copied.

 Comments or formatting white spaces - Programs can be

made to look different just by adding some white spaces

or mere comments

 Changing identifiers – The names of the variables have

been changed from num3 to a1 in program 2

 Order of operands in expressions – In program 1 the sum

is represented as num1 +num2 but in program 2 it is

represented as num2 + num1

 Changing data types – In the above program float has

been changed to int

 Replacing expressions with semantically identical

equivalents -(for example, true with !false)

 Redundant statements or variables-Many a times in order

to make the program look different some statements are

unnecessarily repeated, which have no effect on the final

output

 Order of independent statements-These include

declaration statements and other such statements which

are independent with respect to some statements.

 Changing the structure of iteration statements- For

example in the above example for loop is relaced with a

if else structure

 Changing the structure of conditional statements – At

times the structure of the conditional statements can be

changed without affecting the overall meaning

 Replacing procedure calls with procedure bodies- For

example in the program sum function can either be called

 Introducing non-structured statements such as GOTOs-

For example the program above the GOTO statement is

not needed

 Combining original and copied program fragments- A

common type used by plagiarists, where usually the

copied code is taken from the internet and changes are

made such that it resembles unique

IV. PROPOSED SYSTEM FLOW

The Project would have the following flow of execution to

facilitate maximum similarity detection

Fig2. Flow of the Project

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41107 29

A. Pre Processing

The first phase of source code similarity detection makes

the detection process robust to the following simple source

code transformations: addition, modification, or deletion of

comments, changing the order of variables, as well as

addition of some redundant statements. During this step, all

comments are removed from the original source code...

Combined variable declarations are split into a sequence of

individual declarations. The fully qualified names are

replaced by simple names, while package declarations and

import statements are removed from the original source

code. Also, in this phase, variables in statements are

grouped by type. The following gives an example of the

pre processing stage [7]

 ---- original source code ----

importjava.lang.*;

importjava.util.*;

/*

* block comment

*/

public class A {

/* single-line comment */

public static void main(String[] args) {

java.lang.Integer i1 = 1, i2 = 2;

java.lang.String s = "";

Long l = 5l; /* trailing comment */

java.lang.Integer i3 = i1 + i2;

// end-of-line comment

}}

---- source code after pre-processing ----

public class A {

public static void main(String[] args) {

Integer i1=1;

Integer i2=2;

String s = "";

Long l = 5l;

Integer i3 = (i1 + i2);

}}

B. Tokenization

Tokenization [7] is the process of converting the source

code into tokens. This technique is very popular and used

by many source code plagiarism detection systems. The

tokens are chosen in such a way that they characterize the

meaning of a program, which is difficult to change by a

plagiarist. For example, blank spaces should never

produce a token. A simple tokenization algorithm can

substitute all identifiers and values with tokens

IDENTIFIER and VALUE, respectively. Our softwares

tokenization algorithm substitutes identifiers with the

appropriate tokens. These tokens are chosen based on the

identifier type. For example, all identifiers of numeric

types, i.e. all identifiers of byte, short ,int, long, double

along with their corresponding wrapper classes (Byte,

Short, Integer, Long, Float and Double, respectively), are

substituted with the numeric token. Also, their values are

substituted with the numeric token.

Example:

java.lang.Integer a = 10;

java.lang.String x = "Hello";

Long l = 15l

<NUMERIC_TYPE><IDENTIFIER> =

<NUMERIC_VALUE>

<STRING_TYPE><IDENTIFIER> =

<STRING_VALUE>

<NUMERIC_TYPE><IDENTIFIER> =

<NUMERIC_VALUE>

C. Exclusion

At times the source code can be shared between

programmers. For example, students can use some

common base source code given by their teachers. In this

phase the shared code will be removed from the inputs.

Some similarity detection systems, like JP lag, MOSS and

Plaggie, allow the user to give such legitimately shared

source code (i.e., template code) that will be ignored

during the similarity detection phase .

D. Similarity Measurement

In this phase the similarity between the codes is calculated.

We are using a modified version of the Karp Rabin

algorithm [1] to determine the similarity.

E. Final Similarity Calculation

The fifth phase in this similarity detection process is the

final similarity calculation. This calculation is based on

similarity Measure values obtained from the similarity

detection algorithms, and their weight factors.

V. CONCLUSION

The aim of our project is to develop a tool for checking the

similarity in student’ programming assignments. The tool

will take the student programs as inputs from the faculty

and check for similarity between them. In addition to this,

the tool will also compare the programs with the internet

programs. The current version of the tool is made for

checking similarity between programs written in C

language only. Thus the tool will also consist of some

default programs which would be used for comparing with

the student programs. The output of the tool will givea

percent match between the programs used for testing.

Accordingly, for this we studied related plagiarism tools

such as MOSS. We have also done an exhaustive study of

reference papers based on Plagiarism and Program

similarity to identify areas of improvement. We also

studied algorithms like Karp Rabin algorithm which is a

string matching algorithm which would be implemented in

the project

ACKNOWLEDGMENT

We have great pleasure in presenting the report on

"Plagiarism Detection Tool for Programs". We take this

opportunity to express my sincere thanks towards the staff

of Fr C.R.C.E, Bandra (W), Mumbai, for providing the

technical guidelines, and the suggestions regarding the line

of this work. We would specially like to thank Prof

Prajakta Dhamanskar, CRCE Mumbai, for her

encouragement and guidance.

REFERENCES

[1] P. S. Sonawane Kiran Shivaji, “Plagiarism detection by using karp-

rabin and string matching algorithm together,” International Journal

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41107 30

of Computer Applications, vol. 11 6- no 23, pp. 0975– 8887, April

2015.
[2] G. Whale., “Identification of program similarity in large

populations.” .” In: The ComputerJournal 33.2 (1990), pp. 140–

146.
[3] A. Aiken. A system for detecting software plagiarism. [Online].

Available: https: //theory.stanford.edu/~aiken/moss/

[4] A. A. Saul Schleimer, Daniel Wilkerson, “Winnowing: Local
algorithms for document fin-gerprinting.”

[5] K. W. Bowyer and L. O. Hall., “Experience using moss to detect

cheating on programming assignments in: Frontiers in education
conference, 1999. 29th annual. vol. 3. ieee. 1999, 13b3âĂẞ18.”

Frontiers in Education Conference, vol. 3, 1999.

[6] Vreda, “[automated assessment of programming assignments],”
2013.

[7] D. G. Zoran Djuric, “A source code similarity system for plagiarism

detection.”

	Pre Processing

